Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biomedicines ; 11(3)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36979932

RESUMO

Although fibromyalgia is defined by its core muscular nociceptive component, it also includes multiple dysfunctions that involve the musculoskeletal, gastrointestinal, immune, endocrine, as well as the central and peripheral nervous systems, amongst others. The pathogenic involvement of the nervous system and the numerous neurological and neuroinflammatory symptoms of this disease may benefit from neuromodulatory stimulation techniques that have been shown to be effective and safe in diverse nervous system pathologies. In this systematic review, we outline current evidence showing the potential of non-invasive brain stimulation techniques, such as therapeutic strategies in fibromyalgia. In addition, we evaluate the contribution of these tools to the exploration of the neurophysiological characteristics of fibromyalgia. Considering that the pathogenesis of this disease is unknown, these approaches do not aim to causally treat this syndrome, but to significantly reduce a range of key symptoms and thus improve the quality of life of the patients.

2.
Psychophysiology ; 59(12): e14134, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35780078

RESUMO

Knowledge about the relevance of the left inferior frontal gyrus (lIFG) and the left posterior superior temporal gyrus (lpSTG) in visual recognition of word categories is limited at present. tDCS is a non-invasive brain stimulation method that alters cortical activity and excitability, and thus might be a useful tool for delineating the specific impact of both areas on word recognition. The objective of this study was to explore whether the visual recognition process of verb categories is improved by a single tDCS session. lIFG and lpSTG areas were separately modulated by anodal tDCS to evaluate its effects on verbal recognition. Compared to sham stimulation, motor reaction times (RTs) were reduced after anodal tDCS over the lpSTG, and this effect was independent of the performing hand (right/left). These findings suggest that this region is involved in visual word recognition independently from the performing hand.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Idioma , Análise e Desempenho de Tarefas , Córtex Pré-Frontal/fisiologia , Tempo de Reação/fisiologia
3.
Brain Struct Funct ; 227(3): 1115-1131, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35037127

RESUMO

Implicit motor learning and memory involve complex cortical and subcortical networks. The induction of plasticity in these network components via non-invasive brain stimulation, including transcranial direct current stimulation (tDCS), has shown to improve motor learning. However, studies showing these effects are mostly restricted to stimulation of the primary motor cortex (M1) during the early stage of learning. Because of this, we aimed to explore the efficacy of anodal tDCS applied over the posterior parietal cortex (PPC), which is involved in memory processes, on serial reaction time task (SRTT) performance. Specifically, to evaluate the involvement of both motor learning network components, we compared the effects of tDCS applied over regions corresponding to M1 and PPC during the early and late stages of learning. The results revealed a selective improvement of reaction time (RT) during anodal stimulation over the PPC in the late stage of learning. These findings support the assumption that the PPC is relevant during specific phases of learning, at least for SRTT performance. The results also indicate that not only the target area (i.e., PPC), but also timing is crucial for achieving the effects of stimulation on motor learning.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Aprendizagem/fisiologia , Córtex Motor/fisiologia , Lobo Parietal/fisiologia , Tempo de Reação/fisiologia
4.
Brain Sci ; 12(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053839

RESUMO

Stimulation of the vagus nerve, a parasympathetic nerve that controls the neuro-digestive, vascular, and immune systems, induces pain relief, particularly in clinical conditions such as headache and rheumatoid arthritis. Transmission through vagal afferents towards the nucleus of the solitary tract (NST), the central relay nucleus of the vagus nerve, has been proposed as the main physiological mechanism that reduces pain intensity after vagal stimulation. Chronic pain symptoms of fibromyalgia patients might benefit from stimulation of the vagus nerve via normalization of altered autonomic and immune systems causing their respective symptoms. However, multi-session non-invasive vagal stimulation effects on fibromyalgia have not been evaluated in randomized clinical trials. We propose a parallel group, sham-controlled, randomized study to modulate the sympathetic-vagal balance and pain intensity in fibromyalgia patients by application of non-invasive transcutaneous vagus nerve stimulation (tVNS) over the vagal auricular and cervical branches. We will recruit 136 fibromyalgia patients with chronic moderate to high pain intensity. The primary outcome measure will be pain intensity, and secondary measures will be fatigue, health-related quality of life, sleep disorders, and depression. Heart rate variability and pro-inflammatory cytokine levels will be obtained as secondary physiological measures. We hypothesize that multiple tVNS sessions (five per week, for 4 weeks) will reduce pain intensity and improve quality of life as a result of normalization of the vagal control of nociception and immune-autonomic functions. Since both vagal branches project to the NST, we do not predict significantly different results between the two stimulation protocols.

5.
Biology (Basel) ; 10(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34943145

RESUMO

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation procedure to modulate cortical excitability and related brain functions. tDCS can effectively alter multiple brain functions in healthy humans and is suggested as a therapeutic tool in several neurological and psychiatric diseases. However, variability of results is an important limitation of this method. This variability may be due to multiple factors, including age, head and brain anatomy (including skull, skin, CSF and meninges), cognitive reserve and baseline performance level, specific task demands, as well as comorbidities in clinical settings. Different electrode montages are a further source of variability between tDCS studies. A procedure to estimate the electric field generated by specific tDCS electrode configurations, which can be helpful to adapt stimulation protocols, is the computational finite element method. This approach is useful to provide a priori modeling of the current spread and electric field intensity that will be generated according to the implemented electrode montage. Here, we present standard, non-personalized model-based electric field simulations for motor, dorsolateral prefrontal, and posterior parietal cortex stimulation according to twenty typical tDCS electrode configurations using two different current flow modeling software packages. The resulting simulated maximum intensity of the electric field, focality, and current spread were similar, but not identical, between models. The advantages and limitations of both mathematical simulations of the electric field are presented and discussed systematically, including aspects that, at present, prevent more widespread application of respective simulation approaches in the field of non-invasive brain stimulation.

6.
Molecules ; 25(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650432

RESUMO

Taste processing is an adaptive mechanism involving complex physiological, motivational and cognitive processes. Animal models have provided relevant data about the neuroanatomical and neurobiological components of taste processing. From these models, two important domains of taste responses are described in this review. The first part focuses on the neuroanatomical and neurophysiological bases of olfactory and taste processing. The second part describes the biological and behavioral characteristics of taste learning, with an emphasis on conditioned taste aversion as a key process for the survival and health of many species, including humans.


Assuntos
Tonsila do Cerebelo/fisiologia , Aprendizagem da Esquiva/fisiologia , Condicionamento Psicológico/fisiologia , Modelos Neurológicos , Percepção Olfatória/fisiologia , Percepção Gustatória/fisiologia , Animais , Mapeamento Encefálico , Humanos
7.
Acta Neurobiol Exp (Wars) ; 80(2): 99-107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32602851

RESUMO

Temporal specificity of latent inhibition of conditioned taste aversion (CTA) has been demonstrated after prolonged habituation to temporal contexts in the stages preceding conditioning, and it has been eliminated by restricting consumption during conditioning. However, it is not known if latent inhibition of CTA is still dependent on the temporal context when fluid consumption is limited in the stages prior to conditioning. We tested temporal specificity of latent inhibition in rats with (different time of day for the conditioning stage) and without (same time of day for pre-exposure and conditioning stages) temporal changes on the conditioning day. All animals had limited access to water in the morning sessions of the stages prior to the conditioning day and 15 min of free access to fluid in the evening sessions of these stages. Compared to animals without temporal changes between stages, animals with a different temporal context during conditioning did not show evidence of latent inhibition. Unlike the effects observed after taste stimulus restrictions during conditioning, these results suggest that the temporal specificity of latent inhibition of CTA is not abolished when access to water is limited in the stages preceding conditioning.


Assuntos
Condicionamento Psicológico/fisiologia , Inibição Psicológica , Paladar/fisiologia , Água , Animais , Aprendizagem da Esquiva/fisiologia , Masculino , Memória/fisiologia , Ratos Wistar
8.
Exp Brain Res ; 235(11): 3517-3526, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28861596

RESUMO

Conditioned taste aversion (CTA) is an adaptive learning that depends on brain mechanisms not completely identified. The amygdala is one of the structures that make up these mechanisms, but the involvement of its nuclei in the acquisition of CTA is unclear. Lesion studies suggest that the basolateral complex of the amygdala, including the basolateral and lateral amygdala, could be involved in CTA. The central amygdala has also been considered as an important nucleus for the acquisition of CTA in some studies. However, to the best of our knowledge, the effect of lesions of the basolateral complex of the amygdala on the acquisition of CTA has not been directly compared with the effect of lesions of the central and medial nuclei of the amygdala. The aim of this study is to compare the effect of lesions of different nuclei of the amygdala (the central and medial amygdala and the basolateral complex) on the acquisition of taste aversion in male Wistar rats. The results indicate that lesions of the basolateral complex of the amygdala reduce the magnitude of the CTA when compared with lesions of the other nuclei and with animals without lesions. These findings suggest that the involvement of the amygdala in the acquisition of CTA seems to depend particularly on the integrity of the basolateral complex of the amygdala.


Assuntos
Aprendizagem da Esquiva/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Núcleo Central da Amígdala/fisiologia , Condicionamento Clássico/fisiologia , Complexo Nuclear Corticomedial/fisiologia , Percepção Gustatória/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/patologia , Comportamento Animal/fisiologia , Núcleo Central da Amígdala/patologia , Complexo Nuclear Corticomedial/patologia , Masculino , Ratos , Ratos Wistar
9.
Rev Neurosci ; 28(2): 173-184, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27997354

RESUMO

Transcranial direct current stimulation (tDCS) is a neuromodulatory noninvasive brain stimulation tool with potential to increase or reduce regional and remote cortical excitability. Numerous studies have shown the ability of this technique to induce neuroplasticity and to modulate cognition and behavior in adults. Clinical studies have also demonstrated the ability of tDCS to induce therapeutic effects in several central nervous system disorders. However, knowledge about its ability to modulate brain functions in children or induce clinical improvements in pediatrics is limited. The objective of this review is to describe relevant data of some recent studies that may help to understand the potential of this technique in children with specific regard to effective and safe treatment of different developmental disorders in pediatrics. Overall, the results show that standard protocols of tDCS are well tolerated by children and have promising clinical effects. Nevertheless, treatment effects seem to be partially heterogeneous, and a case of a seizure in a child with previous history of infantile spasms and diagnosed epilepsy treated with tDCS for spasticity was reported. Further research is needed to determine safety criteria for tDCS use in children and to elucidate the particular neurophysiological changes induced by this neuromodulatory technique when it is applied in the developing brain.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Epilepsia/fisiopatologia , Estimulação Transcraniana por Corrente Contínua , Estimulação Magnética Transcraniana , Criança , Humanos , Pediatria , Estimulação Magnética Transcraniana/métodos
10.
Eur J Neurosci ; 41(6): 845-55, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25645274

RESUMO

The posterior parietal cortex is part of the cortical network involved in motor learning and is structurally and functionally connected with the primary motor cortex (M1). Neuroplastic alterations of neuronal connectivity might be an important basis for learning processes. These have however not been explored for parieto-motor connections in humans by transcranial direct current stimulation (tDCS). Exploring tDCS effects on parieto-motor cortical connectivity might be functionally relevant, because tDCS has been shown to improve motor learning. We aimed to explore plastic alterations of parieto-motor cortical connections by tDCS in healthy humans. We measured neuroplastic changes of corticospinal excitability via motor evoked potentials (MEP) elicited by single-pulse transcranial magnetic stimulation (TMS) before and after tDCS over the left posterior parietal cortex (P3), and 3 cm posterior or lateral to P3, to explore the spatial specificity of the effects. Furthermore, short-interval intracortical inhibition/intracortical facilitation (SICI/ICF) over M1, and parieto-motor cortical connectivity were obtained before and after P3 tDCS. The results show polarity-dependent M1 excitability alterations primarily after P3 tDCS. Single-pulse TMS-elicited MEPs, M1 SICI/ICF at 5 and 7 ms and 10 and 15 ms interstimulus intervals (ISIs), and parieto-motor connectivity at 10 and 15 ms ISIs were all enhanced by anodal stimulation. Single pulse-TMS-elicited MEPs, and parieto-motor connectivity at 10 and 15 ms ISIs were reduced by cathodal tDCS. The respective corticospinal excitability alterations lasted for at least 120 min after stimulation. These results show an effect of remote stimulation of parietal areas on M1 excitability. The spatial specificity of the effects and the impact on parietal cortex-motor cortex connections suggest a relevant connectivity-driven effect.


Assuntos
Córtex Motor/fisiologia , Plasticidade Neuronal , Lobo Parietal/fisiologia , Adulto , Potencial Evocado Motor , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inibição Neural , Estimulação Magnética Transcraniana , Adulto Jovem
11.
Summa psicol. UST ; 10(1): 143-154, jul. 2013.
Artigo em Espanhol | LILACS | ID: lil-713272

RESUMO

En esta revisión describiremos brevemente los aspectos fundamentales que caracterizan a la Psicología del Desarrollo y a la Neurociencia, como disciplinas científicas necesarias en el estudio y la comprensión del desarrollo ontogenético y sus trastornos. Esto nos permitirá concretar la naturaleza de las distintas etapas del desarrollo, y evaluar los sustratos cerebrales de la conducta asociados a estos cambios evolutivos. Finalmente, expondremos las características neurobiológicas y evolutivas de un trastorno del neurodesarrollo determinado genéticamente, el síndrome de Down.


In this review we briefly describe the main aspects that characterize the Developmental Psychology and Neuroscience as scientific disciplines necessary in the study and understanding of ontogenetic development and it disorders. This allows us to specify the nature of the different stages of development and to evaluate the neural substrates of behavior associated with these evolutionary changes. Finally, we discuss the neurobiological and evolutionary characteristics of a genetically determined neurodevelopmental disorder, the Down syndrome.


Assuntos
Humanos , Biologia do Desenvolvimento , Cérebro/crescimento & desenvolvimento , Deficiências do Desenvolvimento , Neurociências , Síndrome de Down
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...